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Based on density functional theory calculations, we study cleavage under loading mode I, in which the
atomic layers are allowed to relax after a crack with a given opening was initiated. By introducing the new
materials parameter lr, the critical opening for relaxed cleavage, we derive a simple analytic formulation
describing the decohesion energy and the corresponding stress for relaxed cleavage. In this model, for crack
openings smaller than x� lr we assume linear elastic behavior, i.e., a quadratic form of the decohesive energy

Er�x�=
Gr

lr
2 x2, in which Gr is the cleavage energy for structurally relaxed cleavage surfaces. The general appli-

cability of this model is demonstrated by applying it to materials with different bonding properties, such as
metals, intermetallic compounds, SiC, and Si. It turns out that the values of lr are equal or very similar to the
localization length Lb for ideal brittle cleavage as introduced recently �Lazar et al., Appl. Phys. Lett. 87,
261910 �2005��, manifesting that at the atomic scale the elastic energy during cleavage is a localized quantity.

Critical or maximum stresses for relaxed cleavage �r=2
Gr

lr
are significantly larger than the stresses for ideal

brittle cleavage, which is discussed in detail. Relations between cleavage stresses and cleavage energies or the
uniaxial rigid elastic moduli are analyzed.
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I. INTRODUCTION

A classical theory of ideal brittle fracture is based on Grif-
fith’s thermodynamic balance, which describes the stability
of a crack in a homogeneous medium as a reversible thermo-
dynamic system.1 An existing crack of given size will grow,
if the elastic energy release rate—the elastic energy being
released during crack growth—equals the cleavage energy
which is required for the formation of new fracture surfaces.
Accordingly, only planes with low cleavage energy are fa-
vorable cleavage planes. In Griffith’s model elastic and
cleavage properties are interlinked. Following this direction,
we achieved a formulation for the critical cleavage stress of
ideal brittle cleavage, which involved the concept of local-
ized elastic energy.2 In the present paper we study the influ-
ence of structural relaxation during crack formation on cleav-
age properties. We design a simple model for crack
formation in which the material is cleaved between single-
crystalline planes. The energetics of cleavage will be derived
from ab initio density functional theory �DFT� calculations,
which provide a reliable database. Although the presented
modeling of crack formation is very simplistic as compared
to a realistic multiscale crack formation process we believe
that useful new insights into critical materials properties can
be gained from our results.

Ideal brittle cleavage is modeled by a geometrically rigid
separation x of two blocks of a material without any relax-
ation of the atomic structure within the blocks �Fig. 1, panel
�b��. �It should be noted that further on the subscript b de-
notes quantities related to ideal brittle cleavage.� For such a
process the so-called universal binding energy relation
��UBER� �Ref. 3�� �see the Appendix� may be applied, which
describes the decohesion energy Eb�x� as a function of the

separation x by introducing the cleavage energy Gb and the
length parameter lb as materials parameters, which also de-
pend on the direction of cleavage. For large values of x the
decohesion energy approaches Gb, and at x= lb the maximum
of the stress �b—the critical stress �see the Appendix�—is
reached: A crack is then supposed to grow when the external
stress concentrated at a crack tip exceeds �b. UBER works
well for almost all classes of materials and directions.4,5

If, however, during the cleavage process structural relax-
ation is allowed �Fig. 1, panel �c��, the law for the decohe-
sion energy Er�x� must be different from that for Eb�x�. �It
should be noted that further on the subscript r denotes quan-

FIG. 1. Sketch of cleavage under loading mode I in direction
�hkl�. A solid �sketched in panel �a� as a stacking of layers con-
nected by springlike bonds with a bulk layer distance a0� undergoes
ideal brittle cleavage as sketched in panel �b�: An opening of size x
cleaves the material into two rigid blocks without relaxation of the
atomic layers within the blocks. For the relaxed cleavage the mate-
rial now relaxes in an elastic manner �panel �c�� up to a critical
crack size above which it breaks into two blocks with relaxed sur-
faces �panel �d��. In all the processes, the lateral extension of the
layers �i.e., the area A� remains fixed.
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tities related to the relaxed cleavage process.� In the present
work we now study the relaxed cleavage process by allowing
in the DFT calculations for the relaxation of atomic layers
near to the cleavage surfaces. We present results for materi-
als with different types of bonding, including metals, inter-
metallic compounds, the refractory compound SiC, and co-
valently bonded Si. In particular, we investigate the concept
of localized elastic energy, as introduced recently.2

Section III A presents an analytical formulation of a
simple model for relaxed cleavage, which introduces the re-
laxed cleavage energy Gr and the critical opening lr, similar
to the parameter lb of ideal brittle cleavage; i.e., for x� lr the
crack opens. The applicability of this model is checked by
fitting to it DFT data of a variety of materials. In Sec. III B,
we discuss that for all inspected materials and cleavage di-
rections the values for lr are strikingly similar to the length
Lb, which was introduced as localization length for the elas-
tic energy in our previous study on ideal brittle cleavage.2

Finally, in Sec. III C results and quantities for ideal brittle
and relaxed cleavage are compared.

II. COMPUTATIONAL ASPECTS

For the ab initio DFT calculations we applied the vienna
ab initio simulation package �VASP� which uses the projector
augmented wave technique for the construction of the
pseudopotentials.6,7 The exchange-correlation functional was
described within the generalized gradient approximation ac-
cording to the parametrization of Perdew and Wang.8 Con-
vergency of the total energies with respect to basis size and
number of k points for the Brillouin-zone integration was
carefully checked. Atomic forces were relaxed within a con-
jugate gradient algorithm whenever structural relaxations
were required. The cleavage of a single crystal was modeled
by repeated slabs of atomic layers with three-dimensional
translational symmetry, which is the standard scheme for
modeling surfaces by DFT approaches. Convergence of
cleavage energies as a function of slab thickness and vacuum
spacing was tested. Supercells with 12 atomic layers separat-
ing the �111� and 16 atomic layers separating the �100� and
the �110� cleavage interfaces were sufficiently thick and con-
sequently used in cleavage calculations. Each of the layers
contained one to four atoms, depending on the symmetry.
Depending on the system, the total number of atoms per
supercell varied from 12 to 64. The elastic constants, which
are needed for the calculation of the uniaxial rigid elastic
modulus, are also derived from VASP calculations,9,10 ensur-
ing a precision which is comparable with the cleavage re-
sults.

III. RESULTS AND DISCUSSION

A. Cleavage and structural relaxations

In the relaxed cleavage model the initial preopening x of
the crack is introduced by separating two blocks of a crys-
talline solid �panel �b� of Fig. 1� as was also done for mod-
eling ideal brittle cleavage. Now, for relaxed cleavage the
atomic positions are allowed to relax after the crack opening
by keeping fixed the cleavage plane area A. Structural relax-

ation concerns the interlayer and in-plane spacings; more
complicated reconstructions of the cleavage surfaces could
be taken into account but are considered to be negligible. We
assume that for openings x smaller than a critical length the
crack will be healed up by elastic relaxations �panel �c� of
Fig. 1�. If, however, the critical length is exceeded the bonds
between the cleavage surfaces break, the crack remains, and
structural relaxations only occur inside the blocks close to
the surface �panel �d� of Fig. 1�.

Following the spirit of UBER we introduce a critical
opening x= lr, at which the material should crack abruptly.
The critical length lr is defined as the opening at which the
elastic energy Er�x� equals the cleavage energy Gr. By defi-
nition, the opening lr is now a local quantity independent of
any macroscopic dimensions of the material. The energy
Er�lr�=Gr defines the range of openings x� lr for which
crack healing by a linear elastic response occurs �as sketched
in panel �c� of Fig. 1�. Then, an obvious relation for the
decohesion energy of relaxed cleavage for x� lr is achieved
by

Er�x� =
Gr

lr
2 x2. �1�

For crack sizes x� lr the energy is assumed to be constant
and equal to Gr. This is of course an idealized model, be-
cause for a real material the decohesion energy will deviate
from the ideal elastic behavior at least close to the critical
crack size, as can be seen in Fig. 2, in which the analytic
model is compared to DFT results for NiAl. Nevertheless,
studying many different materials and directions, it turned
out that the simple quadratic law is a rather reasonable ap-
proximation for relaxed cleavage, as also observed by Hayes
et al.11 studying only three cases, namely cleavage of Al in
�111� direction, �0001� cleavage of Al2O3, and �100� cleav-
age of Si. In our case we arrived at the same conclusion, but
now our findings are explicitly described by Eq. �1�. The
critical stress �r is defined by the first derivative,

�r = �dE

dx
�

x=lr

=
2Gr

lr
. �2�

0

1

2

3

4

5

E
(J

/m
2 )

0 1 2 3 4 5
x (Å)

0

10

20

30

σ/
A

(G
Pa

)

0 1 2 3 4 5 6
x (Å)
lrlb

brittle relaxed

NiAl [100]

FIG. 2. Ideal brittle and relaxed cleavage in �100� direction for
NiAl: decohesion energy E /A and critical stress per surface area
� /A vs crack opening x. Full lines: analytic model of Eq. �1�; sym-
bols: DFT results.
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Recently, relying on a universal cohesive relation as in-
troduced by Nguyen and Ortiz,12 a model for relaxed cleav-
age was suggested by Jarvis et al.13 This model, however,
depends on the macroscopic dimension of the material, be-
cause it involves the total number of layers for a given di-
rection �hkl�. Following this concept, critical stresses for re-
laxed cleavage were derived, which were very small, only a
fraction of the corresponding stresses for ideal brittle cleav-
age, which seems to be rather unphysical. In our case, which
is based on intrinsic cleavage properties independent of mac-
roscopical dimensions, we obtain stresses for relaxed cleav-
age which are significantly larger than for ideal brittle cleav-
age, as discussed in Sec. III C.

For all materials investigated in our work, the relaxed
cleavage energy model fits well �for example, see Fig. 2� to
the DFT data. The deviations from the simple analytic model
are significant only close to the critical opening of x� lr. The
differences between the analytic model and the DFT data are
more pronounced for the stress, because it is the first deriva-
tive of the decohesion energy �see Fig. 2�. In Table I we
compare the ideal critical opening lr to the separation lh, the
healing length: For openings x� lh the crack will heal up by
elastic relaxation as a result of the DFT calculations. The
procedure for actually determining lh is illustrated in Fig. 3
showing the decohesion energies per unit area for tungsten in
two directions. There, one observes three different regions
for E /A: 1� The curve is continuous for 0�x� lh, 2� for lh

�x� lf the curve is interrupted, and 3� for x� lf the decohe-
sion energy again is continuous, and finally approaching the
cleavage energy Gr /A. For all the other studied metallic sys-
tems the splitting of E /A into the described three different
regions is rather similar. The interval of crack openings lh
�x� lf indicates a region of instability: The atoms in the
surface layers of the separated blocks experience forces of
rather equal strength from atoms of both blocks, and conse-
quently the procedure for relaxing the geometry by minimiz-
ing the forces does not converge well. Therefore, no suffi-
ciently accurate decohesion energies can be derived, and the
continuous curve is interrupted. For values x� lf the surface
layers are now attracted to their corresponding blocks and
again stable relaxed atomic configurations are achieved. Fi-
nally, for sufficiently large separations �i.e., the interaction
between the blocks vanishes� systems with free surfaces are
described within a repeated slab scheme, which is the stan-
dard model for DFT calculations of surfaces. The instability
range may be interpreted as some kind of energy barrier for
breaking the material as expressed by the difference �
= �E�lf�−E�lh�� /A, which can be quite sizeable �see Fig. 3�,
depending on the size of the instability range and the steep-
ness of the function E�x� /A.

For Si and SiC �see Fig. 4� the instability range, and con-
sequently the barrier �, is very small, which indicates that
the bonds break abruptly due to intrinsic brittleness.

Griffith’s condition of thermodynamic reversibility im-
plies that crack healing should occur for x� lr. However,
crack healing has very rarely been observed by experiment.14

According to Table I the actual healing length lh is smaller

TABLE I. Model parameters for relaxed cleavage for selected
materials and cleavage directions �hkl�: cleavage energy Gr /A
�J /m2� per surface area A. The healing length lh is the length up to
which a crack is healed up by elastic relaxations �see Fig. 3 and
text�, whereas lr represents the critical length of the analytic model
according to Eq. �1�. At x= lr the stress for the relaxed cleavage
according to Eq. �2� reaches its maximum value �r /A �GPa�. All
lengths are given in units of Å.

Structure �hkl� Gr /A lh lr �r /A

Al fcc 100 1.8 1.9 2.2 16

110 1.9 2.2 2.4 16

111 1.6 2.3 2.4 13

W bcc 100 7.8 2.5 2.8 62

110 6.4 2.1 2.1 61

NiAl B2 100 4.6 2.5 2.5 37

110 3.1 2.1 2.5 30

111 3.9 2.2 2.1 35

TiAl L10 100 3.2 2.2 2.6 25

110 3.9 2.2 2.3 34

001 4.2 2.6 2.7 31

Ni3Al L12 100 4.2 2.2 2.4 35

111 3.6 2.2 2.3 31

Al3Sc L12 100 2.6 2.8 2.7 19

110 2.9 2.9 2.6 22

111 2.3 2.7 2.7 17

SiC B3 111 3.8 2.1 2.2 35

Si A4 111 2.9 1.9 1.9 30
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FIG. 3. DFT results for the decohesion energy per surface area
E�x� /A vs cleavage opening x for W as cleaved in the �100� �panel
�a�� and �110� �panel �b�� directions. The vertical lines indicate the
healing lengths lh, up to which the crack is healed up by elastic
relaxation, as well as the crack formation lengths lf, for which the
crack forms. The range � indicates the region of instability, as
described in the text.
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than the model length lr, which would be the critical length
up to which a material responds in an ideal elastic way until
it abruptly breaks. For real materials, anharmonic deviations
from the quadratic law will occur before the bonds actually
break, and consequently the breaking of the material will
happen for crack openings smaller than lr.

The parameters for the selected materials as derived from
the DFT application are summarized in Table I. For the ideal
relaxed cleavage all the lengths lr are much larger than the
critical length lb for ideal brittle cleavage �see Ref. 2�. This is
obvious because for relaxed cleavage the atomic structure is
now allowed to relax after crack initialization, and therefore
it needs larger crack sizes for finally breaking the material
apart. In other words, the quadratic expression for the deco-
hesion energy for relaxed cleavage cuts the relaxed surface
energy Gr at values of lr which are larger than the lengths lb
at which the UBER for ideal brittle cleavage has its inflec-
tion point. Also the critical stress �r is significantly larger �by
10% up to 50%� than its counterpart �b for ideal brittle
cleavage, as is discussed in more detail in Sec. III C.

The cleavage energies Gr must be smaller than their coun-
terparts Gb because of the gain in relaxation energy which
reduces the loss of bonding energy due to cleaving the ma-
terial. In the present work we only accounted for layerwise
geometrical relaxation and surface rumpling. Considering
surface reconstructions—which might further lower the val-
ues of Gr—could result in very complicated atomic struc-
tures. In general, for metallic surfaces the reduction in the
cleavage energy due to more complex relaxations is small;
the effect of reconstructions would be more pronounced for
solids with strong covalent bonds �e.g., Si �Ref. 15��. Never-
theless, the general aspect of our model would remain un-
changed; only the critical values lr and �r would be reduced.

Tungsten is a representative example of bcc transition
metals. It is brittle at low temperatures and the bonding is
strong, which in our case is reflected by the very large values
for G /A and � /A �see Tables I and II�. According to the DFT
results for relaxed cleavage in Fig. 3, assuming Griffith’s
model tungsten would preferably cleave in �110� direction,
because then the cleavage energy is lowest. On the other
hand, the critical stress is almost equal to that for �100�
cleavage. These findings indicate similar cleavage fracture
properties for both directions. From fracture experiments it
was observed that W primarily cleaves between �100� planes,
but occasionally also �110� cleavage is preferred.16 In more
recent experiments, �100� and �121� cleavage planes ap-
peared, whereas �110� cleavage showed resistance against
crack propagation.17 A full understanding of the cleavage
properties of tungsten will, however, go beyond Griffith’s
model because also lattice trapping effects depending on the
crack front direction seem to play a significant role.18

The compounds Al3Sc and NiAl are intermetallics, for
which the bonding may be characterized as some mixture of
metallic and covalent bonds. At room temperature, they are
known to fail by brittle fracture. Analyzing our results, Al3Sc
has by far the lowest critical stresses and cleavage energies
which reflects the rather weak bonding in comparison to
NiAl, for which the bonding is of stronger, more d-like char-
acter. According to experiment polycrystalline Al3Sc under-
goes �110� transgranular cleavage at low temperatures.19 Be-
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FIG. 4. �Color online� DFT derived decohesion energy per sur-
face area E�x� /A vs crack openings x for ideal brittle �index b� and
relaxed �index r� cleavage for SiC cleaved between widely spaced
�111� planes of the diamondlike structure. The figure illustrates the
ideal model parameter lr and the crack healing length lh, i.e., for
x� lh the crack is healed up by elastic relaxation. The crack forma-
tion length lf �see Fig. 3� is not drawn, because it nearly coincides
with lh. The energy gained by structural relaxation after crack open-
ing is obtained by subtracting the decohesion energies of the re-
laxed case from the unrelaxed �i.e., ideal brittle cleavage� case.
Furthermore, the analytical model for Er�x� /A according to Eq. �1�
is also sketched. This curve is obtained by fitting its quadratic form
to the DFT data for small x, at which the DFT energy is also of
quadratic shape according to linear elasticity theory.

TABLE II. Calculated parameters for ideal brittle cleavage �in-
dex b� and relaxed cleavage �index r� for selected materials and
cleavage directions �hkl�: uniaxial elastic modulus C �GPa�, brittle
cleavage energy Gb /A �J /m2� per surface area A, critical length lb,
interlayer bulk distance a0, localization length for brittle cleavage
Lb and critical stress �b �GPa�. The lengths lr represent the critical
length for relaxed cleavage as obtained by fitting the DFT results to
Eq. �1�. All lengths are given in units of Å.

�hkl� C Gb /A lb a0 Lb lr �b /A

Al 100 118 1.8 0.57 2.03 2.2 2.2 12

110 127 2.1 0.64 1.43 2.5 2.5 12

111 129 1.6 0.54 2.34 2.4 2.4 11

W 100 540 8.4 0.66 1.59 2.8 2.8 47

110 516 6.5 0.55 2.24 2.4 2.4 44

NiAl 100 203 4.8 0.69 1.45 2.0 2.5 26

110 284 3.2 0.54 2.05 2.5 2.5 22

111 311 4.1 0.58 0.84 2.7 2.1 26

TiAl 100 190 3.3 0.58 2.00 2.0 2.6 21

110 240 4.1 0.69 1.41 2.1 2.3 22

001 185 4.4 0.70 2.03 2.1 2.7 23

Ni3Al 100 225 4.3 0.66 1.78 2.3 2.4 24

111 331 3.7 0.52 2.06 2.4 2.3 27

Al3Sc 100 189 2.7 0.61 2.05 2.6 2.7 16

110 182 2.9 0.65 1.45 2.7 2.6 16

111 180 2.6 0.61 2.37 2.6 2.7 16

SiC 111 508 4.2 0.58 1.89 2.1 2.2 27

Si 111 189 3.1 0.54 2.36 1.8 1.9 21
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cause its cleavage properties are rather isotropic, the
preferred cleavage direction is most probably dictated by an
interplay of tensile and shear stresses,20 and not by the low-
est cleavage energy only. For NiAl, fracture experiments in-
dicated �110� cleavage habit planes �sometimes also the
higher-index �511� cleavage planes occur�.21–23 The prefer-
ence for �110� cleavage can be deduced from our results,
because G /A and � /A are lowest for the �110� direction. As
a side remark, in our DFT calculations no local magnetic
moment appeared during cleavage of NiAl although we al-
lowed for spin polarization.

The intermetallic compound Ni3Al crystallizes in the
same structure as Al3Sc, but Ni3Al is highly ductile24 and its
polycrystalline alloys have the tendency to undergo brittle
intergranular fracture. According to Table I the cleavage
properties of Ni3Al are markedly stronger than those of
Al3Sc �G /A as well as � /A are twice as large�, which may
explain the quite different fracture properties. For Ni3Al the
larger values of G /A prohibit brittle transgranular cleavage
in favor of dislocation emission �see, for instance, Refs. 25
and 26 and references therein� or grain-boundary fracture.
Furthermore, Ni3Al shows also an interesting anisotropy of
mechanical properties. The cleavage energy is 15% larger for
the �100� direction than for �111�, whereas the uniaxial elas-
tic modulus C for the �111� direction is 50% larger than for
�100�. These results demonstrate that estimates of fracture
properties, which are solely based on the elastic properties,
are unreliable.

Discussing relaxed �111� cleavage of Al, we obtained a
value of �r /A=15 GPa, which is only slightly larger than
the value for ideal brittle cleavage of �b=11 GPa. Clearly,
the effect of relaxation is very small, because the screening
of perturbations such as the creation of a surface is strong
due to the free-electron-like electronic structure of Al. In
Ref. 11 a layer dependent model for relaxed cleavage was
applied. By that, an extremely small value for the critical
stress of �̄r=0.16 GPa is derived for a length of 10 �m of
�111� stacked Al. The comparison with our value is not pos-
sible, because the critical stress scales according to �̄r

�1 /�N �with N being the number of layers of the macro-
scopic solid� in the model of Hayes et al.11 Our model and
our data for relaxed as well as brittle cleavage are indepen-
dent of any macroscopic dimension of the slabs, as long as
the actual slab of material is sufficiently thick which is the
case. On the other hand, for brittle cleavage the UBER pa-
rameters of our calculation agree perfectly with the data of
Ref. 11.

The refractory compound SiC and covalently bonded Si
are examples of intrinsically brittle materials, which are
cleaved easiest between the widely spaced �111� planes of
the diamond structure. For Si, experiments at low tempera-
tures show brittle fracture at a load consistent with Griffith’s
criterion.27 The mechanical properties are particularly inter-
esting in this context and attracted a great deal of attention
�see Refs. 27–31 and references therein�. Dynamic fracture
of Si was addressed in a multiscale atomistic simulation.29

Interestingly, two length scales which emerged from the
simulation-bond-breaking and elastic relaxation length scales
correspond very well to the critical lengths lb and relaxed
cleavage lr of our models. Obviously, atomic-level aspects of

decohesion during brittle fracture are well described by a
simple uniaxial cleavage model like ours. However, a quan-
titative comparison of the results is difficult, because the
lengths derived from the atomistic simulation of Ref. 29 de-
pend strongly on the applied empirical potential. Our cleav-
age model, on the other hand, offers the advantage that it can
be studied by an ab initio parameter-free DFT approach.

B. Localization of elastic energy in the cleavage
process

Recently, the concept of localization of the elastic energy
has been introduced for ideal brittle cleavage.2 The motiva-
tion was to correlate elastic and cleavage properties avoiding
a nonlocal treatment of the elastic energy which leads to
inconvenient models and rather unphysical results.11 For the
reader’s convenience we elaborate our concept in more detail
in the Appendix. Historically, the idea of a localized elastic
energy was introduced by Orowan32 and Gilman,33 who re-
lated the elastic energy in the stressed specimen to the sur-
face energy of the fractured faces. These authors made the ad
hoc assumption that localization occurs in a volume spanned
by the surface area A and the bulk interlayer spacing a0 along
a given direction �hkl�. However, the results obtained by the
Orowan-Gilman model turned out to be not useful. Based on
DFT results for a variety of materials with different bondings
we arrived at the conclusion that a0 should be replaced by a
new materials parameter, the localization length Lb for the
elastic energy. It was found that for nearly all materials and
directions studied the values of Lb are in the range of 2–3 Å
with an average value of about 2.4 Å.2

According to Eq. �A3� all elastic energy localized in the
volume ALb is transformed into cleavage energy for ideal
brittle cleavage. The area A is fixed by the bulk lattice and
direction �hkl�. The only free parameter is Lb which is de-
rived from fitting to cleavage properties. The length Lb might
be considered as a critical length for a perturbation beyond
which the crystal does not respond anymore in an elastic
manner. This is exactly the case for the model for relaxed
cleavage, as described by Eq. �1�: When cleaved by an open-
ing x the decohesion energy is assumed to be quadratic in x
up to a critical length lr beyond which all elastic energy is
converted into the cleavage energy Gr. As a consequence one
therefore would expect that both critical lengths Lb and lr are
equal. Indeed, by inspection of Table II it can be observed
that the agreement between the two lengths is good or even
perfect, having in mind that Lb and lr are derived indepen-
dently in totally different ways. Differences occur for two
reasons: 1� Fitting the quadratic part of the decohesion en-
ergy for small x may lead to errors of lr of �0.1 Å; 2� for
some cases at energies well below Gr the DFT data deviate
significantly from the simple quadratic law, i.e., anharmonic
effects become sizeable. Such cases will be discussed in the
following.

Table II shows that the parameters lr and L coincide for
metals such as Al and W which are very different concerning
the strength of their bonding. One also finds excellent agree-
ment between both lengths for covalently bonded Si and SiC,
the intermetallic compounds Al3Sc and Ni3Al, in spite of the
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fact that for Al3Sc both lengths are rather large. Exceptions
occur for cleaving NiAl in �100� and �111� directions. Ac-
cording to Fig. 2, for the �100� direction the energy for re-
laxed cleavage shows a pronounced deviation from the ideal
elastic behavior and a large instability region �. Concerning
�111� cleavage, the layers stacked in this direction are very
closely spaced with a value of a0=0.84 Å and the rather
large value of Lb=2.7 is combined with sizeable anharmo-
nicity effects. The second exception concerns TiAl with the
tetragonal L10 structure, and occurs due to its very strong
anharmonicity and anisotropy:34 The third-order elastic con-
stant c111=−67 GPa is exceptionally small whereas c333=
−6076 GPa is exceptionally large when compared to com-
mon metals. The unusual nonlinear elastic properties of TiAl
lead also to effects such as a negative volume thermal expan-
sion down to 0 K.34

The striking similarity of both parameters Lb and Lr im-
plies that the concept of localization of the elastic energy in
cleavage fracture is meaningful. In the process of relaxed
cleavage as described above the energy of broken bonds is
being converted into the elastic energy until a stable crack is
formed. In a true fracture process, the elastic energy of the
stressed part of the material must provide the energy for the
newly cleaved fracture surfaces. Therefore, during the frac-
ture process a large portion of the elastic energy must be
present in a small volume near the crack. In other words, at
the moment of fracture the elastic energy must localize in the
vicinity of the atoms adjacent to the fracture surface. With
our concept as presented in Ref. 2 and by Eq. �1� we were
able to describe the localization of the elastic energy and to
quantify the corresponding volume in terms of the lengths lr
and Lb.

C. Comparison of brittle and relaxed cleavage

Figure 5 shows the DFT results for the critical stresses
� /A vs cleavage energy G /A for both relaxed and brittle
cleavage, illustrating that there is some relation between
stress and energy. However, estimating the critical stress di-
rectly from the cleavage energy might lead to errors of up to
20%, for relaxed as well as for ideal brittle cleavage. There-
fore, assuming a direct relation between cleavage stress and

cleavage energy—as was done in the pioneering work of
Griffith35 for brittle cleavage—is quantitatively not very use-
ful.

As argued in Ref. 2 an average value of Lb�2.4 Å may
be assumed for estimating the stress within an accuracy of
about �10%. Setting lr equal to Lb according to the discus-
sion in Sec. III B the relation �r�GPa��8.3Gr�J /m2� be-
tween the critical stress �r and the cleavage energy Gr is
derived. Fitting the DFT data—as shown in Fig. 5—yields a
prefactor of 8.5 being rather close to the estimated value of
8.3. In Fig. 5 also the results for the brittle cleavage proper-
ties are shown. By a linear fit to the DFT data we obtain the
relation �b�GPa��5.6Gb�J /m2�. From both relations for the
critical stresses we gain the relation

�r � 1.5�b, �3�

between the relaxed and ideal brittle cleavage stress. That
means if structural relaxation—according to our modeling—
occurs during the cleavage process the critical stress is about
50% larger than for ideal brittle cleavage. �It should, how-
ever, be noted that the relation in Eq. �3� is a rather crude
approximation, because large errors of about 30% may oc-
cur.� The difference between the two stresses cannot come
from the cleavage energies, because the relaxed cleavage en-
ergy Gr must be smaller than Gb: By averaging the DFT data
we arrive at the averaged estimation Gb�1.06Gr. A plau-
sible argument seems to be that part of the energy, which has
to be invested for the preopening of the crack, is regained by
the elastic healing process and therefore the material breaks
at much larger critical openings than in the ideal brittle case,
i.e., lr	 lb �according to Tables I and II�. The actual expla-
nation is, however, not so simple, because of the ratio

�r/�b = 2e
lbGr

lrGb
, �4�

which we obtained by considering Eqs. �2� and �A2�. Setting
equal lr=Lb, as argued above, and using the approximate
relation between Gr and Gb one can estimate �r /�b
=5.13lb /Lb, and by assuming Lb�2.4 Å and lb�0.7 Å
�both are reasonable average values� we derive the factor 1.5,
as it appears in Eq. �3�. By making use of Eq. �A4�, which
relates the ideal brittle cleavage stress to the uniaxial rigid
modulus C, we find a further relation, �r /�b�11�Gb /AC:
The larger the cleavage energy and the smaller C the larger is
the stress for the relaxed cleavage in comparison to the ideal
brittle case.

Figure 6 shows the critical stresses vs elastic modulus C.
Notice that large critical stress and in particular hardness are
often being correlated with large elastic modulus, even
though the underlying deformations are fundamentally dif-
ferent. The elastic moduli describe response of a material
under small load, whereas the cleavage properties correspond
to response to larger loads. This fact is demonstrated also in
Fig. 6, in which no obvious relation is to be found. Any
simple direct relation will fail to give a reasonable estimation
of the stress �b on the basis of the elastic properties. In
fact, Eqs. �A4� and �A5�—as expressed by
�b /A��CGb /A—relate the critical stress for ideal brittle
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FIG. 5. Critical stresses � /A for relaxed cleavage and brittle
cleavage versus the respective cleavage energies G /A. Full line:
linear least-squares fit to the DFT data of relaxed cleavage
�crosses�; dashed line: linear least-squares fit to DFT data for brittle
cleavage �squares�.
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cleavage to a combination of elastic properties �modulus C�
and fracture properties �cleavage energy Gb�. Therefore, ac-
cording to our findings also quantities related to �b—such as
Vicker’s hardness for brittle materials—cannot be reasonably
estimated solely on the basis of elastic properties.

IV. CONCLUSIONS

Cleavage decohesion including relaxation of the atomic
layers of the cleavage surfaces was described by a simple
model which combines a purely elastic response with an
abrupt breaking of the material. Within this model, two ma-
terials parameters are introduced: the cleavage energy Gr and
the critical crack opening lr. The energy Gr is derived di-
rectly from DFT calculations, in which the surfaces of the
cleaved material are structurally relaxed. The critical crack
opening lr is obtained by fitting the analytical model for the
decohesive energy to DFT data. By studying a variety of
solids with different bondings it turns out that the simple
analytic model provides a reasonable description of the re-
laxed cleavage process. We emphasize that the length lr is a
localized quantity, independent of any macroscopic dimen-
sions of the material. We found that the values of lr are equal
or very close to Lb, the localization length of the elastic
energy for ideal brittle cleavage. The similarity of both pa-
rameters implies that at the atomic scale the localization of
elastic energy in a fracture process is an intrinsic property of
materials. The critical stresses �r for relaxed cleavage are
significantly larger than for ideal brittle cleavage �b
although—because of structural relaxation—the cleavage en-
ergies Gr are smaller than their ideal brittle counterparts Gb.
Based on the analytic models for both cleavage processes
and reasonable averages for critical length parameters we
analyze the reason for this difference of the stresses. By plot-
ting the DFT data for the cleavage stresses as a function of
the uniaxial rigid elastic modulus, we conclude that there is
no simple direct relation between the quantities. Therefore,
estimation of critical stresses on the basis of only elastic
properties might lead to large errors.

On the other hand, Eq. �A4� expresses the critical stress
for ideal brittle cleavage by a combination of elastic proper-
ties �elastic modulus C� and fracture properties �cleavage

energy Gb�. As tested for a large variety of materials its
approximation—as given by Eq. �A4�—works rather well
�with an error of about 10%�, and might be conveniently
used for an estimation of the ideal brittle cleavage stress once
Gb and C are known. Moreover, the critical stress for relaxed
cleavage �r can be estimated within a good accuracy by
calculating solely the relaxed cleavage energy Gr, as demon-
strated in Fig. 5.
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APPENDIX

Ideal brittle cleavage describes cleavage of a crystal in
which the atoms in the cleaved blocks do not relax their
positions after cleaving. For an analytic formulation of the
ideal brittle cleavage process in loading mode I �as sketched
in panel �b� of Fig. 1� we make use of the UBER �Ref. 3�
which proved to be a reliable model. When in a given direc-
tion �hkl� a single crystal is cleaved between two planes by
an opening x, the decohesion energy �or loss in bonding en-
ergy� is expressed by

Eb�x� = Gb	1 − �1 +
x

lb
�exp�−

x

lb
�
 . �A1�

The material and direction dependent parameters are the
cleavage energy Gb and the critical length lb at which the
stress �b�x�=dEb /dx reaches its maximum,

�b =
Gb

elb
. �A2�

It should be noted that for a given direction �hkl� the
parameters Gb and lb might also depend on the actual planes
between which the material is cleaved. This happens for
cases for which there are more than one geometrical possi-
bility for cleavage �e.g., for the diamond lattice in �111� di-
rection with short and long interplanar distances�.

As described in Ref. 2 cleavage and elasticity are assumed
to be correlated at very small x for which we set equal the
elastic energy and the Taylor series expansion of UBER up
to x2,

1

2

Gb

lb
2 x2 =

1

2
ALbC

x2

Lb
2 . �A3�

The elastic energy Ee=CALb comprises the uniaxial elas-
tic modulus C for a given direction �hkl� and Ee is assumed
to be localized in the volume V=ALb. Now, a new materials
parameter, the localization length Lb, is introduced, which is
independent of any macroscopic dimensions of the material.
The elastic modulus C for a given direction �hkl� is derived
by the elastic constants,36 which can be calculated by a DFT
approach.

Using the relation of Eq. �A3� the parameter lb appearing
in Eq. �A2� can be eliminated, resulting in the definition of
the critical stress per surface area,
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FIG. 6. Critical stresses � /A for relaxed cleavage and brittle
cleavage versus the uniaxial modulus C. Full line: linear least-
squares fit to the DFT data of relaxed cleavage �crosses�; dashed
line: linear least-squares fit to DFT data for brittle cleavage
�squares�.
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�b

A
=

1

e�Lb

�C
Gb

A
. �A4�

In our recent study2 we observed that for many materials
Lb varies between 2 and 3 Å with an average value of Lb
=2.4 Å. Inserting Lb into equation Eq. �A4� the approximate
relation37

�b

A
� 0.75�C

Gb

A
. �A5�

In this equation,
�b

A is given in units of GPa, and
Gb

A in
units of J /m2. In Eqs. �A4� and �A5� the long-searched-for
relation between cleavage �fracture� and elastic properties in
terms of local quantities only has been established.
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